Linear Recurrence Relations for Graph Polynomials

نویسندگان

  • Eldar Fischer
  • Johann A. Makowsky
چکیده

A sequence of graphs Gn is iteratively constructible if it can be built from an initial labeled graph by means of a repeated fixed succession of elementary operations involving addition of vertices and edges, deletion of edges, and relabelings. Let Gn be a iteratively constructible sequence of graphs. In a recent paper, [27], M. Noy and A. Ribò have proven linear recurrences with polynomial coefficients for the Tutte polynomials T (Gi, x, y) = T (Gi), i.e. T (Gn+r) = p1(x, y)T (Gn+r−1) + . . .+ pr(x, y)T (Gn). We show that such linear recurrences hold much more generally for a wide class of graph polynomials (also of labeled or signed graphs), namely they hold for all the extended MSOL-definable graph polynomials. These include most graph and knot polynomials studied in the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On edge detour index polynomials

The edge detour index polynomials were recently introduced for computing the edge detour indices. In this paper we find relations among edge detour polynomials for the 2-dimensional graph of $TUC_4C_8(S)$ in a Euclidean plane and $TUC4C8(S)$ nanotorus.

متن کامل

Recursive three term recurrence relations for the Jacobi polynomials on a triangle

Given a suitable weight on IR, there exist many (recursive) three term recurrence relations for the corresponding multivariate orthogonal polynomials. In principle, these can be obtained by calculating pseudoinverses of a sequence of matrices. Here we give an explicit recursive three term recurrence for the multivariate Jacobi polynomials on a simplex. This formula was obtained by seeking the b...

متن کامل

On Sequences of Numbers and Polynomials Defined by Linear Recurrence Relations of Order 2

Here we present a new method to construct the explicit formula of a sequence of numbers and polynomials generated by a linear recurrence relation of order 2. The applications of the method to the Fibonacci and Lucas numbers, Chebyshev polynomials, the generalized Gegenbauer-Humbert polynomials are also discussed. The derived idea provides a general method to construct identities of number or po...

متن کامل

Digraph Polynomials for Counting Cycles and Paths

Many polynomial invariants are defined on graphs for encoding the combinatorial information and researching them algebraically. In this paper, we introduce the cycle polynomial and the path polynomial of directed graphs for counting cycles and paths, respectively. They satisfy recurrence relations with respect to elementary edge or vertex operations. They are related to other polynomials and ca...

متن کامل

Characterizations of Quasiseparable Matrices and Their Subclasses via Recurrence Relations and Signal Flow Graphs

The three-term recurrence relations satisfied by real-orthogonal polynomials (related to irreducible tridiagonal matrices) and the twoand three-term recurrence relations satisfied by the Szegö polynomials (related to unitary Hessenberg matrices) are all well-known. In this paper we consider more general twoand three-term recurrence relations, and prove that the related classes of matrices are a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008